Скорость и ускорение в естественном способе задания движения

1.6 Определение скорости и ускорения точки при естественном способе задания движения

Из определения скорости точки

где

- единичный вектор касательной, тогда
Алгебраическая скорость – это проекция вектора скорости на касательную, равная производной от дуговой координаты по времени. Если производная положительна, то точка движется в положительном направлении отсчета дуговой координаты.
Из определения ускорения
поскольку τ - переменный по направлению вектор, то:
Производная
определяется только свойствами траектории в окрестности данной точки, при этом

n - единичный вектор главной нормали,
ρ   - радиус кривизны траектории в данной точке.
Таким образом,
т.е. вектор ускорения раскладывается на две составляющие - касательное и нормальное ускорения:
Здесь:
- алгебраическое значение касательного ускорения (проекция вектора ускорения на касательную) характеризует изменение скорости по величине;


– нормальное ускорение (проекция вектора ускорения на главную нормаль) характеризует изменение скорости по направлению. Вектор ускорения всегда лежит в соприкасающейся плоскости и проекция ускорения на бинормаль равна нулю (ab=0).
скорости и ускорения точки при естественном способе  задания движения

Движение точки ускоренное, если знаки проекций векторов скорости и ускорения на касательную совпадают.