Момент относительно точки

Не удалось найти URL спецификации гаджета
Если под действием приложенной силы твердое тело может совершать вращение вокруг некоторой точки, то для того, чтобы охарактеризовать вращательный эффект силы вводится понятие – момент силы относительно точки (или центра).

Моментом силы относительно точки (рисунок 1.1) называется векторное произведение радиус-вектора  точки  приложения силы на вектор силы. 
                                                Mo(F) = r  F
Момент силы относительно точки

Рисунок 1.1

Вектор момента направлен перпендикулярно плоскости, в которой лежат сила и точка, в ту сторону, откуда поворот от действия силы виден происходящим против хода часовой стрелки.
Не удалось найти URL спецификации гаджета
Вектор момента характеризует положение плоскости и направление вращательного действия силы, а также дает меру этого действия:

 |Mo(F)| = Frsinα = F⋅h,

где  h – плечо силы (кратчайшее расстояние от точки  O – центра момента – до линии действия силы). Если сила проходит через точку, то ее момент относительно этой точки равен нулю.
Момент силы относительно точки не меняется от переноса силы вдоль линии ее действия.

Если силы расположены в одной плоскости, то используется понятие алгебраического момента силы. Алгебраическим моментом силы относительно точки (или центра) называется взятое со знаком плюс или минус произведение модуля силы на плечо (рисунок 1.2). 

Знак плюс выбирается в том случае, если сила стремится поворачивать плоскость относительно центра момента против хода часовой стрелки.

Алгебраический момент силы относительно точки (центра)
 
Рисунок 1.2

Если сила F  задана своими проекциями Fx, Fy, Fz  на оси координат и даны координаты x, y, z  точки приложения этой силы, то момент силы относительно начала координат вычисляется следующим образом:
Формула момента силы относительно начала координат

Проекции момента силы   на оси координат равны
Проекции момента силы на оси координат
Не удалось найти URL спецификации гаджета
Не удалось найти URL спецификации гаджета