Структурный анализ и синтез механизмов

Структурный анализ и синтез механизмов

Суть классификации плоских механизмов по Ассуру-Артоболевскому основана на методах исследования механизмов: механизмы одного класса имеют одни и те же методы исследования независимо от области их применения или функционального назначения.

Необходимо знать, что представляет собой структурная группа (группа Ассура), как определяется ее класс, порядок, вид. Желательно запомнить таблицу, показывающую сочетание звеньев и кинематических пар пятого класса в группе:

nгруппы 2 4 6 8 ...
P5 группы 3 6 9 12 ...

Решение задачи начинается с определения числа степеней свободы кинематической цепи, положенной в основу данного механизма. В соответствии с числом степеней свободы назначается число начальных звеньев (или входных звеньев), после чего цепь становится механизмом.

После присоединения каждой группы Ассура должен получаться промежуточный механизм, с тем же числом степеней свободы, что и заданный. После присоединения последней группы должен получиться первоначально заданный механизм.

Обратите внимание на то, что класс механизма (а значит и методы его решения) определяются не только схемой механизма, но и тем, какое звено принято в качестве входного. При одной и той же схеме, но при разных входных звеньях, могут получаться разные по классу механизмы, а, значит, и методы их исследования будут различны.

Необходимо отметить также, что наличие в схеме механизма замкнутых контуров не определяет класс механизма, т.к. при разбивке на группы Ассура эти контуры могут распадаться. Но если какой-то контур сохранился в группе Ассура, то он определяет класс этой группы, и через класс группы – класс механизма.

В механизмах могут встретиться двойные и более сложные шарниры, поэтому надо быть внимательным при определении числа степеней свободы, а также при разбивке механизма на группы Аcсура.

Надо иметь в виду следующее:

  • при одной и той же схеме можно получить разные механизмы с точки зрения методов исследования, если задавать в качестве входных различные звенья;
  • из одних и тех же групп Ассура можно составить разные механизмы, с различным функциональным назначением;
  • структурная группа (группа Ассура) обладает одними и теми же свойствами и методами исследования независимо от того, в каком механизме она находится. Это очень важное свойство позволяет разрабатывать методы исследования только для групп Ассура, а не для каждого механизма из их огромного количества;
  • рассматриваемая структурная классификация применима не только для анализа существующих механизмов, но и для целенаправленного синтеза механизмов с предсказуемыми свойствами (путем присоединения к начальному или к начальным механизмам групп Ассура и дальнейшего их наслоения).

При наличии у механизма двух степеней свободы необходимо задать два начальных звена.

Если механизм имеет высшие кинематические пары IV класса, то прежде, чем разбивать механизм на структурные группы, надо произвести замену высших пар цепями с низшими парами, т.к. в группы Ассура входят только пары V класса.

Для последующего анализа целесообразно сравнить число степеней свободы заданного механизма и механизма, полученного после замены высших пар.

В механизме могут встретиться лишние степени свободы. Формула для определения числа степеней свободы дает правильный результат для общего случая, но в частном случае, при определенных размерах звеньев, фактическое число степеней свободы может отличаться от определенного по формуле.

Обычно наличие круглого ролика дает лишнюю степень свободы (его вращение вокруг собственной оси дает механизму дополнительную степень свободы, но это движение не влияет на характер работы остальных звеньев и всего механизма в целом). Поэтому число начальных механизмов надо задавать по действующему числу степеней свободы (Wдейств.=Wрасчетн. – Wлишн.).

При замене высшей пары лишняя степень свободы автоматически исчезает (поэтому после замены высшей пары новое расчетное значение числа степеней свободы будет равно действующему числу степеней свободы). Это удобно для контроля правильности установления наличия или отсутствия лишних степеней свободы.

В некоторых случаях сложно определить класс групп Ассура, а, соответственно, и механизма по кинематической схеме, т.к. некоторые треугольники вырождаются в прямые линии, стороны контуров могут быть представлены ползунами и т.д. В результате довольно сложно определить наличие замкнутого контура в группе и число его сторон. В таком случае удобно воспользоваться построением структурной схемы механизма (или отдельной группы).

Структурная схема вычерчивается без масштаба, все звенья, входящие в три кинематические пары, изображаются в виде жестких треугольников, звенья, входящие в четыре кинематические пары, – в виде жестких четырехугольников и т.д., все ползуны условно заменяются шарнирами. Таким образом, формируется другой механизм с такой же структурой, но с более наглядной для решения данной задачи схемой. Естественно, что при дальнейшем исследовании рассматривается первоначально заданный механизм.

Контрольные вопросы

  1. Что является звеном механизма? Примеры названия звеньев в зависимости от характера движения.
  2. Что называется кинематической парой? Классификация кинематических пар по разным признакам.
  3. Что называется кинематической цепью, механизмом?
  4. Основные виды механизмов, машин.
  5. Определение числа степеней свободы пространственной кинематической цепи. Определение числа степеней свободы плоской цепи.
  6. Понятия: входное звено, выходное звено. Сколько надо задать входных звеньев, чтобы кинематическая цепь превратилась в механизм?
  7. Замена высших кинематических пар 4 класса цепями с низшими парами 5 класса.
  8. Структурная классификация плоских механизмов по Ассуру - Артоболевскому. Принципы формирования плоского механизма на основе данной классификации.
  9. Что называется начальным механизмом? Какая кинематическая цепь является структурной группой (группой Ассура)?
  10. Чем определяется класс, порядок, вид группы Ассура? Как определяется класс механизма?

Кинематическое исследование механизмов >
Курсовой проект >