Определение усилий в стержнях

Расчет усилий в стержнях

Задача

Груз Q=1000 Н удерживается с помощью двух невесомых стержней, шарнирно скрепленных между собой в точке A и в шарнирах B и C с вертикальной стеной (α=60o, β=30o).

Определить усилия в стержнях AB и BC (рисунок 2.1,а).

Определить усилия в стержнях
Рисунок 2.1

Решение

В данном случае следует рассмотреть равновесие точки A, т.к. все силы приложены в этой точке.

Нить с грузом натянута силой Q. В равновесии точку A удерживают два невесомых стержня. Их реакции всегда направлены вдоль стержней.

Реакции принято направлять от узла (точки A), т.е. предполагается, что стержни работают на растяжение (рисунок 2.1, б). В случае отрицательного ответа при решении уравнений стержень работает на сжатие.

При равновесии системы сил выполняется равенство

Это векторное равенство можно построить. Откладываем в масштабе известную силу Q, к концу вектора прибавляем SAB, т.к. его величина и направление неизвестны, проводим через конец вектора Q горизонтальную линию (параллельно SAB, рисунок 2.1, б).

Замыкающий вектор SAC должен пройти через начало вектора Q под углом β к вертикали. Результатом построения является замкнутый треугольник (рисунок 2.1, в). Величины усилий в стержнях можно получить, умножая замеренные значения векторов сил на масштаб или воспользовавшись теоремой синусов:

Направление силы SAC в силовом треугольнике говорит о том, что этот стержень работает на сжатие.

Задача может быть решена и аналитически. Для этого выбираем систему координат xAy (рисунок 2.1, б) и проецируем на ее оси векторное равенство (2.3):

∑xi=0,   SAB + SACsinβ=0;
∑yi=0,   Q + SACsinα=0
. (2.5)

При этом

sinβ=cosα,   sinα=cosβ.

После решения уравнений равновесия находим

SAC = -Q/sinα,   SAB = -SACsinβ = Qsinβ/sinα. (2.6)

То есть и в этом решении по знакам в ответах получаем, что стержень AC работает на сжатие, а стержень AB – на растяжение.

Другие примеры решения задач >>