Построение эпюр Q и M для двухопорной балки

Построение эпюр для двухопорной балки

Задача

Двухопорная балка с системой внешних нагрузок

Для заданной двухопорной балки, нагруженной силой F, моментом M и равномерно распределенной нагрузкой q построить эпюры внутренних поперечных сил Qy и изгибающих моментов Mx.

Решение задачи

Опорные реакции для данной расчетной схемы были определены здесь.

Балка имеет 3 силовых участка. Обозначим их римскими цифрами, например, справа налево.

Обозначение силовых участков балки

Для расчета внутренних силовых факторов по участкам балки воспользуемся методом сечений.

Расчет значений

Начнем с первого силового участка (CD).

Проведем поперечное сечение в пределах участка, в любом месте между точками C и D.

Данное сечение делит балку на две части (левую и правую). Для определения внутренних факторов можно выбрать любую из них, но лучше выбирать менее нагруженную часть балки. Очевидно это будет ее правая часть.

Сечение балки по первому участку

Расстояние от правой границы участка до рассматриваемого сечения обозначим переменной z1, которая может принимать значения от 0 до 1,5 метров (т.е. 0 ≤ z≤ 1,5м).

Мысленно отбросим на время всю левую часть балки.

Рассматриваем правую часть балки

Поперечная сила Q в данном сечении первого участка будет равна сумме всех внешних сил приложенных к рассматриваемой части балки с учетом их знака, т.е.

Расчет поперечной силы на первом силовом участке
Здесь сила F записана положительной, т.к. стремится повернуть правую часть балки по ходу часовой стрелки относительно рассматриваемого сечения.
Правило знаков для поперечных сил Q

В данном выражении отсутствует переменная z1, что говорит о том, что внутренняя поперечная сила будет одинакова для всех сечений этого участка.

Изгибающий момент M в рассматриваемом сечении определяется как сумма изгибающих моментов от всех внешних нагрузок выбранной части балки.

С учетом правила знаков при изгибе получаем

Выражение для изгибающих моментов на первом участке
Здесь сила F по правилу знаков записана отрицательной, т.к. стремиться сжать нижний слой балки.
Правило знаков для изгибающих моментов

В полученном выражении переменная z1 является плечом момента силы F для данного сечения балки.

Как видно из полученного выражения изгибающий момент по длине участка меняется линейно (т.к. z1 в первой степени), поэтому для построения эпюры на данном участке нам достаточно двух точек.

Этими точками будут значения изгибающего момента на границах I участка, т.е. при z1=0 и при z1=1,5м

Значения момента на границах первого участка

На первом участке внутренние усилия определены.

Переходим на второй силовой участок (BC).

Так же начинаем с того, что проводим сечение в любом месте участка и выбираем рассматриваемую часть балки. Здесь также удобнее рассмотреть правую часть балки.

Расстояние до рассматриваемого сечения от правой границы участка обозначим переменной z2. При этом 0 ≤ z≤ 1м.

Сечение по второму участку балки

Запишем выражения и рассчитаем граничные значения внутренней поперечной силы Q

Расчет поперечных сил на втором участке балки

И изгибающего момента M

Выражение для расчета изгибающего момента на втором участке
Здесь опорная реакция RC положительна, потому что сжимает верхний слой, а сила F и распределенная нагрузка q отрицательны, т.к. сжимают нижний слой балки.
Как записывается момент распределенной нагрузки показано здесь.

В выражении для MxII переменная во второй степени, поэтому эпюра моментов на втором участке будет иметь вид параболы.

Как известно, для построения параболы необходимо знать положение минимум трех ее точек. Но как будет показано дальше, в некоторых случаях при построении эпюр, параболы можно вычерчивать всего лишь по двум точкам. Рассчитаем их значения:

Значения изгибающего момента на границах второго участка балки

Осталось найти внутренние усилия на III силовом участке (AB).

Рассекаем балку между точками A и B. Выбираем менее нагруженную левую часть. 0 ≤ z3 ≤ 2м – интервал возможных положений сечения относительно левой границы участка.

Записываем выражения для Q и M и вычисляем значения в крайних точках

Сечение балки по третьему участку
Расчет значений Q и M на третьем силовом участке двухопорной балки

Здесь видно что выражение для QyIII - линейное, а на эпюре Mx на данном участке будет парабола.

По полученным данным строим эпюры.

Построение эпюр

Для построения эпюр рассчитанные значения откладываем от базовой линии на соответствующих участках.

Порядок построения эпюр

Начинаем с эпюры поперечных сил Q.

На первом участке выражение для Q не зависело от z1 поэтому его значение будет постоянным (QyI=const) по длине участка, т.е. линия эпюры будет параллельна базовой.

На втором участке были получены два значения Q: -58,3 кН при z2=0 и -18,3кН при z2=1м. Переменная z2 откладывалась от правой границы участка, поэтому z2=0 в точке C, соответственно в т. B переменная z2=1м.

Построенная эпюра поперечных сил Q

Аналогично откладываются значения Q на третьем участке и значения M на эпюре изгибающих моментов.

Точки на II и III участках эпюры Q и на I участке эпюры M соединяются отрезками, так как распределение внутренних сил и моментов там линейное (переменная z в первой степени).

Соединение линейных участков эпюр Q и M

А при соединении точек эпюры M параболами, надо смотреть на эпюру Q.

Дело в том, что эпюра поперечных сил это первая производная эпюры изгибающих моментов. Поэтому в сечениях балки, где Q=0 на эпюре M будет экстремум.

Как видно эпюра Q пересекает нулевую линию только на третьем силовом участке балки. Поэтому, ввиду того что нас интересуют только пиковые значения изгибающих моментов, на втором участке две крайние точки достаточно соединить параболой, не имеющей экстремума, выпуклость которой направлена навстречу распределенной нагрузке.

Для более точного построения линии параболы на данном участке можно найти значения момента для промежуточных положений сечения, например при z2=0,5м.

Парабола без экстремума на втором участке эпюры M

На третьем участке, в сечении, где Q пересекает базовую линию необходимо рассчитать точку экстремума.

Расчет экстремума эпюры моментов

Для этого выражение для QyIII приравнивается к нулю и рассчитывается значение z3, при котором изгибающий момент на участке принимает экстремальное значение. Его подставляют в выражение для MxIII

Определение экстремума эпюры моментов на третьем участке балки

Это значение откладывается на эпюре M под точкой пересечения эпюры Q с базовой линией

Точка экстремума на третьем участке эпюры изгибающих моментов

после чего три точки соединяются плавной линией.

Построенные эпюры поперечных сил и изгибающих моментов для двухопорной балки

Эпюры внутренних поперечных сил и изгибающих моментов построены.

Примеры построения эпюр

Проверка эпюр поперечных сил >
и изгибающих моментов >
Расчеты для подбора сечений балки >
Другие примеры решения задач >