Равновесие пространственной системы сил

Условия равновесия произвольной пространственной системы сил

Произвольной пространственной системой сил называется система сил, линии действия которых не лежат в одной плоскости.

Согласно основной теореме статики (теореме Пуансо) любую произвольную систему сил, действующую на твердое тело, можно заменить эквивалентной системой, состоящей из силы (главного вектора системы) и пары сил (главного момента системы сил).

Отсюда вытекает условие равновесия произвольной пространственной системы сил.

В геометрической форме: для равновесия произвольной пространственной системы сил необходимо и достаточно, чтобы главный вектор и главный момент системы равнялись нулю

R = 0,  MО = 0.

В аналитической форме: для равновесия произвольной пространственной системы сил необходимо и достаточно, чтобы суммы проекций всех сил на три координатные оси и суммы моментов всех сил относительно этих осей были равны нулю

ΣFkx = 0,  ΣFky = 0,  ΣFkz = 0,
Mx(Fk) = 0,   My(Fk) = 0,  Mz(Fk) = 0.

Условия равновесия могут быть использованы для решения задач на равновесие при определении неизвестных величин (реакций связей).

Чтобы задача была статически определимой, число неизвестных должно быть не более шести.

В частности, для системы параллельных сил условиями равновесия являются следующие равенства

ΣFkx = 0,  Mx(Fk) = 0,  My(Fk) = 0.

>>  Центр параллельных сил